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SUBMODULAR SET FUNCTIONS, MATROIDS AND THE GREEDY ALGORITHM: TIGHT

WORST-CASE BOUNDS AND SOME GENERALIZATIONS OF THE RADO-EDMONDS THEOREM

by

Michele Conforti* and Grard Cornuejols*

ABSTRACT

For the problem max (Z(S) : S is an independent set in the matroid X), it is
well-known that the greedy algorithm finds an optimal solution when Z is an additive
set function (Rado-Edmonds theorem). Fisher, Nemhauser and Wolsey have shown that,
when Z is a nondecreasing submodular set function satisfying Z (0) = 0, the greedy
algorithm finds a solution with value at least half the optimum value. In this paper
we show that is finds a solution with value at least 1/(l + 0) times the optimum
value, where a is a parameter which represents the "total curvature" of Z. This
parameter satisfies 0 < y <1 and a - 0 if and only if the set function Z is additive.
Thus the theorems of Rado-Edmonds and Fisher-Nemhauser-Wolsey are both contained in
the bound 1/(l + a). We show that this bound is best possible in terms of o.
Another bound which generalizes the Rado-Edmonds theorem is given in terms of a
"greedy curvature" of the set function. Unlike the first bound, this bound can
prove the optimality of the greedy algorithm even in instances where Z is not addi-
tive. A third bound, in terms of the rank and the girth of X, unifies and general-
izes the bounds (e-l)/e known for uniform matroids and 1/2 for general matroids. We
also analyze the performance of the greedy algorithm when X is an independence sys-
tem instead of a matroid. Then we derive two bounds, both tight:

The first onsis (1 - (1 - 7/K) k]I where K and k are the sizes of the largest and
smallest maximal independent sets in X respectively; the second one is 1/(p + 'V)
where p is the minimum number of matroids that must be intersected to obtain X.

Key Words: Combinatorial Optimization, Greedy Algorithm, Matroid, Submodular Set
Function, Worst-Case Analysis, Heuristic, Tight Bound.
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1. INTRODUCTION

Many problems in combinatorial optimization can be written in a natural

way as

(1.1) max {Z(S) :S E X)

where X is a family of subsets of a finite set N and Z is a set func-

tion defined on {S C N).

The family X is called an indqpur,-deince s,,st,-n if

(1.2) S EX and T CS -*T EX.

The sets in X are often called i,'depoid, t sets. If furthermore

(1.3) S, TE X and IT I+ I = IS I -3j E S -T such that T U{j) E X,

then the family X is called a niatrovid. See [12], [10].

For a set function Z, we define the dis.: rete derivative at S C N

*in direction j E N as p.(S) = Z(S u 1j)) - Z(S). The set function Z is

* said to be euJx'idu'lar if

(1.4) T C S C N -* p.i(T) > p.(S) for all j E N-S .

A greedy (or steepest ascent) algorithm comes naturally to mind when

X is a matroid Cor an independence system) and when Z is subnodular.

CREEDY Ar.GO?I2TRM' Start with the empty set. Then recursively add to the

current solution set S an element j with the largest discrete derivative

P.i(S) among all j E N -S such that S U Ej X and p.(S) > 0. Stop

when no such element exists.
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~e11-knon examples of problems fitting the framework (1.1) include

(1.5) the problem of finding a maximum weight independent set in a

matroid : X is a matroid and Z is additive (i.e., o.(S) = p.,

a constant independent of S). Then the greedy algorithm finds
an optimal solution (Rado-Edmonds theorem) [3]; a cor-on applica-

tion occurs when the independent sets are the forests of a graph

[91, [10).

(1.6) a simple plant location problem [2] : X is a unifcir matroid

(i.e. X = {S C N : ISI < K)) and Z is a nondecreasing sub-

nodular set function with Z(Q) = 0. Then the greedy algorithm

finds a solution with a value which is guaranteed to be at least

(e-l)/e times the optimum value [2], [11], where e is the base

of the natural logarithms;

(1.7) the problem of finding a set of maximum weight in the intersection

of two matroids : X is one of the two matroids and, for all

S C N, Z(S) is the maximum weight over all sets T C S which are

independent in the second matroid. Then the greedy algorithm

guarantees a solution within 50 % of the optimum [5].

These are three exam-ples where the feasible set is a matroid. Although

the bound guaranteed by the greedy algorithm is different in each case we

believe that these results can be unified. For example, we will show that the

bounds (1.6) and (1.7) are the two extreme values of a bound expressed in terms

of the cardinalities of the smallest infeasible and largest feasible sets.

These parameters are called the airth and the rank of the matroid X respectively.

We will also show that the bounds (1.5) and (1.7) are the two extreme values of

a bound expressed in terms of a parameter reflecting the "total curvature" of

the function Z (see definition below).

7-7
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It will be convenient to assume that, in (1.1), the objective function

is nondecreasing and satisfies Z(0) = 0. (As in [11], general subrodular

set functions can be handled by using an appropriate performance measure;

however, with the above assumption, the greedy performance will simply be

given as a percentage of the optimum value.) Nondecreasing submodular set

functions such that Z(0) = 0 are s24.diftive (i.e. Z(S) + Z(T) > Z(S U T)

V S, T C N). They arise in location theory and more generally in economic

probltems where the marginal profit pj(S) of performing a new action j

once a set S of actions is already undertaken is nonincreasing with respect

to S. They have also been used to measure consumer satisfaction [8].

In the maximum weight forest problem [see (1.5)] it is sometimes more real-

istic to assume that the objective function is subtodular rather than just

additive. Three other examples from the mathematical prcgranring literature

can be found in [11]. An example which may be little known occurs in network

flow theory. Given a network with edge capacities, a source s and a set N

j of sinks, let Z(S) be the maximum flow from s to a subset S of sinks.

Obviously the set function Z is nondecreasing and Z(0) = 0. Fulkerson

liked to ask whether Z is submoduLar in his course on network flows. It is

left here as an exercise.

The totaZ cuioature of a nondecreasing submodular set function is

a= max { O( - Q.(N - {j})

a = ma *0jf.N* OjP

where N*= {j E N P(0) > 01. Note that a can vary between 0 and I and

that a = 0 if and only if Z is additive. In Section 2 we prove that the

greedy algorithm finds a solution with a value which is guaranteed to be

at least 1/(l +a) times the optimum value for problem (.1) when X is a

matroid and Z is a nondecreasing submodular set function with Z(O) = 0

and total curvature a. This bound generalizes the Rado-Edmonds theorem,

see (1.5), as well as the bound (1.7), obtained when a = 0 and a = I

respectively. We show also that the bound 1/(l +a) -is best pcssible in

terms of a.
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Let S0 = 0 C S1 C ... C S K be the sets which are succesively con-

structed in the course of the greedy algorithm (SK is the greedy solution).

we define the greeddy curvature of Z as

{ Pj(0) -Pj s )

a max max p) i

Oi!K-I jEN i(

where Ni = N* r{ j E N- Si  S U {j} E X. Note that aG < a, the total

curvature of Z. Note also that a can equal 0 even when Z is not addi-

tive. In Section 3 we prove that the greedy algorithm finds a solution

with a value which is guaranteed to be at least (I -aG) times the optimum

value of problem (1.1), again with the assumptions that X is a matroid

and that Z is nondecreasing, submodular and Z(V) = 0. Note that when

Q( = 0 we can guarantee the optimality of the greedy algorithm even though

the objective function may not be additive.

In Section 4 we give a bound which depends only on the matroid X. Let

K be the rank of X, ie. the common cardinality of the maximal independent sets

and let (h + I) be its girth, ie. the cardinality of a smallest dependent set.

We prove the following tight bound. The value of a greedy solution is at least
_ - h K- 2h-K]

half the optimum value if K > 2h and at least KI - (-) I times the op-

timum value if K <2h. Our bounding method is based on the weak duality theorem

of linear programming in the same spirit as [1,11]. More precisely we decom-

pose the greedy solution ZG a aI+ 02+...+ K where 0, 2 0. Then we find in-

equalities relating the optimum value Z* to this decomposition A0 2 Z* where a

is the column vector of p,'s and A is a matrix. Now find > >0 such that

K
A < e where e is a row vector with K ones. We have ZG = E o : > A o2

i-i

m(z Z* providing a bound on the greedy solution. To show that the bound

Wstight we give a family of examples which achieve it. The originality of

our system A a Z* is that it incorporates simultaneously information on the

objective function Z and on the matroidal structure of the feasible set.
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Examples of independence systems are quite common in 0,1 programing.

In fact, given a nonnegative matrix A, the family of 0,1 vectors that

satisfy Ax < b is an independence system (here we identify a set S and

its incidence vector x. = 1 if j E S, 0 otherwise). Conversely any
J

independence system is the solution set of such a 0,1 program.

Two bounds were proven in [5) regarding the greedy algorithm for prob-

lem (1.1) when X is an independence system and Z is a nondecreasing sub-

modular set function with Z(O) = 0. First it was shown that the greedy

algorithm guarantees a solution value at least - times the
L K

optimum value, where K and k are respectively the maximum and minimum cardinali-

ties of a maximal independent set in X. The second bound is -ii where p is the
p+l

minimum number of matroids that one needs to intersect in order to obtain the

independence system X. (The fact that any independence system can be expressed

as the intersection of matroids is proved in [7].) When the set function Z is
k 1

additive these two bounds can be sharpened to h and - respectively (6], [7].
K p

In Section5 we show that, in terms of K, k and the total curvature

of Z, the greedy algorithm guarantees a solution value at least equal to

r (- ,k times the optimum value. This bound is tight for all

0 < a < 1. Note that when we set a = I and a - 0 we get the bounds

l-] and respectively. Note also that, when k = K, we get

a result for the uniform matroid, namely the bound (I - e-)/a ; further-

more this bound is best possible in terms of a. In particular it is easy

to see that it dominates the bound 1/(0 +a) for any 0 <a < I since
(Ie-') /a > I - ! > I/ (I+ a).

In Section 6 we give a bound in terms of p and a, nammely the bound

1/(p+a). This generalizes the bounds p 1 andentione
p p 1~

earlier in this introduction for different variations of problem (1.1).

In fact the result is proved in the more general context max {Z(v) :v E X}

where Z is a nondecreasing submodular vector function and X is the

intersection of p polyratroids.

al! ....



-6-

2. THE SOUND 1/(0 +c)

Let N be a finite set and Z 2 N R+ a nondecreasing sub-odular

set function with Z(V) = 0. Given a set Q C N and an ordered set£m

S {j,...,j) C N, we define S = {j ,.,ji) for I < i < t, and

i(s-i i P

I : . ( )p iO (Si-l)

-Ji

•si-i

where S* {ji E S -P, P i  ) > 0). Note that CL < a, the toLal

curvature of Z. Denote Pi = C ji(S-), i = ],...,t.

L7A 2.1. Z(f2) -(Q aP + E Pi + p (S).
0:3 ijCS- i:j i ESnS 1 Wd-S

Proof A simple consequence of the definition (1.4) is

(2.1) Z(f2 US) SZ(S) + Z p (S).
WE -S

By the definition of a0

Z(2US) = Z() + M P. (QL)s ) > Z(f) + 0-a ) c.
i:JiCS_4Q Ji:i _

In this section and the next two we assume that X is a ratroid. W~e
K = ,. .

also assume that S =K{j,.. .,K 1  is the sequence chosen by the greedy

algorithm. Note that SK is a !se (i.e. a maximal set in X). A conse-

quence of axiom (1.3) is that all the bases of X have the same cardinality.

Recall the notation Si= {J "".J.1 and pi = ji(s-),i (S,...,K.

l . . . . . .. . ... .. . " i . . . . . . .. . .1.U. .. .. . l I
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LEt.-MA 2.2. The e nents of any base Q {W 1,...,WKI can be ordered so

that P. ) , i = ,...,K. art pricre, if w. E K nSK, th'en
W i - Ji"

Proof : The lemma is proved by induction on i, for i = K,...,]. Assume

that the elements wP satisfy the inequality P,,(S -I < 9 for £ > i,

and let Qi = fl { W £ > i). Consider the sets S and 2 . By the

matroid axiom (1.3),9w i E 2 _ i-I such that Si- I U {W. E X. Since

ji is the elemment chosen by the Freedy algorithm, pWi ( < i-I

Furthermore if ji E Qi we can set w. = ji.

Let ZG be the value of a greedy solution and Z* the optimal value

of problem (1.1).

T 'HEO E. 2.3. If X is a rmatroid and Z is a vondecra&sing sz'.;.duar set

f~ucticn with Z(O) = 0 and total c:4i-,ature a, t.en

G Z*.

Proof Let 62 be an optimal solution and SK the greedy solution. By

Lemma 2.1

z* a Z + KP +  " (s
i:JEKnSK I i:Li.EK-SK I

1 1

By Lemr.a 2.2, P (sK) P .(S <  p, Therefore,

z aD ZG + ZG < (1 +a)ZC

COROLLARY 2.4. The proof actually s;cws the strcnaer bound Z G Z .

When = 0, the greedy algorithr finds an optimaZ soZution.

. ., . ...



CROLLARY 2.6. Whe-n Z is addati-*e (i, 'aZen'.UtZ when a= 0)

a .gcrit h finds an orFt&aI soZt "n (Z t-Ecnds T.':r,).

COR O LARY 2.6. Z G Z*/2. (See [5].)

C7. LLARY 2. 7. Azy tw m,=*nal ects in the intersection cf twx m:roids

".-'e c a z~ti-s which are a factor of 2 of e.2ch ct "r.

FY.:-RK 2.8. It is worth stressing the combinatorial spirit of the deriva-

tion of the bound 1/(l +a). This derivation is based on two observations,

namely Le.-na 2.2. and the inequality (2.1). It is close to the classical

proof of the Rado-Edmonds Theorem, where the additive version of Lemma 2.2

is used implicitly.

,E.^4,?' 2.9. The proof of Theorem 2.3 can be modified to yield a stronger

bound : instead of S1 and S , consider f2 and S - . 1-en, by Lcria 2.1

Z * <a 0 (ZG-_K ) + Z P + (SK-1).
i: j. SKOSK- 1 i: X. SK-  

1
1 1

By Lcuima 2.2, p. (SK) K pW .(S - ) P 0i  for all i . Therefore

Z* 0)zG -)z a K" This proves the bound

0+z K
(2.2) Z G  TlloZ* + -+0  K

0 a

(',:L4.'Y 2.20. If Z* - 0 "?d a 60 or 1, t4en ZC > - (,

Proof Assume that the inequality is not strict; then c.K = 0 as a con-

sequence of (2.2). Then in every base there exists an element (p K such that

1 (S K- ) 0. Therefore p (0) = 0, since a < I. The greedy and optimal

1 __ ____ _ __ ____ ____ ___ ____ ____ ____ __opti___al



-9-

solution values are not c,- id if we intersect the r.atroid X by the

uniform rratroid X,- = {T IT! < K - 1). The bond (2.2) ecces

Z* + 0 K- Avain by our assumption we must have K1 =0
+ 0L a K-K 1

and, by induction, pi 0 Vi = K This would inply Z* = 0, a

cont radiction.

C11? 1. If Z* 0z',d a = 0 or 1, t;-, Z > T-+ z (a :.Ct

Next we show that the bound 1/l +c) is best possible in tc-rms of a.

In turn this implies that the bound 1/(l +ax is best possible in ter-is

of a

01

5& .212. Thcre exists an infnite fam'iiy of ,cb~ors F:rc, N,

ZK -C 1 ZK as K -*oo

KG  I +" a K. 7 " :.

Z" K and ZK  0 . ,arcc c..
Kt; 2-h,.i

Proof : 1hen a 0 the lound is always tight, so there is notl ing to

prove. When a = 1, the result is already known (5]. So aEsi-e 0 <i < I.

Let N = {j ... JK w . 9WK} and N = {j"'j ' ,.''',a I
for t = ],...,K. We define X as the family of all the svb!ets S C N

such that

(2.3) IS r) NtI < t for t ],...,K.
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It is clear that X is an inepc,:Thence bvst,-m, i.e. aYiom (1.2) is verified.

So to prove that X is a iratroid it r,-rains to show that a:.iom (1.3) liolds.

Let S, T E X be such that jTI + I - !SI. Then S-T -40. Let e. E S-T

be an elvrent with largest index i, I < i < K, where e. denotes either ji

or " . We will show that T U {e.} E X, namely that I(Tu {e.})n NtI < t
1 1

t Ntfor t ] ,...,K. By the choice of ei, IS n Nt > I T U {e l) ) n st I fo r

t > i. This inplies I(Tu {e.}) n Ntj I t for t /> i, using the fact that

S is independent and (2.3). WIh.en t < i, (T u {e.)) n Nt T r) Nt, so the

inequality j(T u {e.}) r Nt1< t for t < i follows from the fact that

T is ind3epndent. This shows T U {e.i E X as announced.
1

Define the set function Z, for any S C N, as

Z(S) j. E S) + Z W E S such that i= I or ji- £ S; +

1 1 1 
_1C S

l . , E S such that i >-2 and j S), where
- 0 1 1 i

for i 1, ... K. This function is sul-odular, non-

decreasing with total curvature a since

T- i  if i > 2 and ji-I C S

.(S) =

1 Pi if i= I or ji- E S,

Cif S
si i+J i

c. (S) -

jcx
1 1i- p (1 -)p i if wi+ 1 E S.

i+I 1 i

':ow we conpute the value of a greedy solution. The larecst discrete

JIIderivative at 0, is Cj) (0) = 0w (0) ( 0() So thegre

algorithm can choose j, in the first iteration. Assume S t = {j.i
t St

has been chosen. pj (St) = Ot i , u {w.} X for i < t and

j
t+1

~(St << fo i +I tj 1.S can be cliosn neyxt. The greedy

_ _ __ _ 
_ _ _ _ _ _
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'soNI tionsK- "K
''" ) . i has the value

K

(2.4) ,- I )K

The optUi.al set is { ., tj W K and has value

* (1-aK-I
(2.5) _ - (I -)

This cimpleres the proof.

3. T HE BOUND G )

let S C S C ... C S be the sets which are success ively

constructed in t!e course tff the greedy ali-orithm. Let N i = {j E -S

S u {j] E X and r.( ) > 0). The greedy curvature of Z is3
°(- P- ( s i )

C(= max max ..-

lIi .() I )

Note that the greedy curvature a of Z is defined with respect to X and

that a< a, the total curvature of Z.

",,._L S. , .. .n() = O, z;

(3.1) zG K -I
Z * - KG

a,2Z t;it t..:,,d je twi;zt for 0 < a <I G K

Proof By Lerma 2.2, p . pW, i < P,...,. By the definition of

a0  ( i - ) (S (I -G )PW (0) for i 2,...,K. So the opti-al value Z*
1 a

satisfies
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K K

Z 1 0 q.) < P + (I-- G ) . 2

1 1 G =2

Th ,efore a I - aG + a -. Since Z* < Kp, the validity of the
z GCz~

bound (3.1) is proved.

The fact that the bound can be achieved is shown by the following exam-

ple. The ratroid has K+ I elements and only one set is infeasible, namely

the full set. The set function is defined by

1SI if X 9 s
z(s) =

I + is (I- ) if x. E S
1

It is easy to check that Z is nondecreasing and subrrodilar for 0 < j .

Z 
K- IK

that A and that Z I - a G K if the greedy algorithm chooses

x in the first iteration.

C

.".. he"bGud K can easily be ccr, puted in the cc,:rse

of the algorithm. It gives an a pesteriori bound on the quality of the

greedy solution which can be tighter than the a priori bound 1/(1 ).

In fact it proves the optimality of the greedy algorithm wthen 0, = 0,

which occurs when Z is additive but may also occur for rore gc-neral set

functions.

COROLLARY 3.3. If X is a matroid, Z a submodular set function and the greedy

algorithm is such that p (Si) - oj(0) for i = 1,..., K-i and all J E Ni , then

the greedy solution is optimum.
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. 3.4. Theorem 3.1 remains true if CL is replaced by the parameter

P (S K-1
L - ma x I
G jc,.-S K - I :P (P)>0 c

JU

pj(0) - P (N - {j})

or %-"C jEN-{j1 )

Note that the parareters Cl' and OLG do not dominate each other. So the

two versions of Theorem 3.1 are interesting. It is also worth noting that

p. (0) - pj (N-{j1 )

Ci = 7nax G

Fowever, the worst-case example of Theorem 3.1 vorks for a" but not for a
Ci

4. A BOUND IN TERMS OF THE RANK AND THE GIRTH OF THE MATROID

Let S =, SI ,...,S K be the sequence of sets chosen by the greedy algorithm,

and define tj . Z(Sj) - Z(s). Note that the greedy solution has the value

GZ
G = OI+ 02+...+ CK •

It has been shown in [11] that Z is submodular and nondecreasing if and only

if Z(n) <_ Z (S) + Y Pj(S) for all n, S a N. let 0 be an optimal solution.

Z (0) < z(St) + tjS t) 0 t -<.K. (4.1)
jE _St

s t t

F,,r all t <h rid j E - S, S U 1j) E X, ;.nd rerefore pj(St) r

Since - Stj < K, we cbtain that Z* must 'satisfy the follt-wing reat-.n-

tr'- P ,. +

Z < 1 0i + K Pt+1 t =,...,h -I. (4.2)
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For independence systems, it turns out that these constraints are the only

essential ones in the analysis of the greedy heuristic, see [5]. For a

matroid, however, the optimal solution must satisfy another family of in-

uquali ties.

PROPOSITION 4.1. The eZren, ts of any basis of a matroid can be or2ered

so t",at, for any h< t - K,

pk  if i < h

p (St) < p. if h< i < t

Pt+l if i> t.

Proof. Corisider the order defined in the proof of Lemma 2.2. Since
i-I is ini-Enu-nt, oi :L

S U {i s ind,&luc, so is oU {d for every t < i. Tl-refore,-t

by the choice rade in the greedy algorithm pi (S) < + for i > t.

i-iJ

For h < i < t - L-emm 2.2; this implies

S(S t) < Pi since S C S .

Firally, for i-< h, p (Shl) p since Sh -l U {eI ) is indip-ncdnt.

TLejs(-fore c (S ) < Oh as a consequnce of th Iixpot.,sis h < t.

Irc;,o.ition 4.1 alleo.ws us to write the irequality

t Pj (St) <hPh + ph + . . + pt + (K-t)pt+I h < t < 1:- 1 (4.3)

C,-bn;ng the i ,'alities 4.1 and 4.3 we get

Z* <P + " + Ph-I ' (h+ i)Ph + 2ph+ + "+2t + (K -t)ot+l (4.)

for h < t < K - I. We have just proved
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"I'li DOR ENJ 4. 2. TefZ~~ ,: "it-*s a -e aZZ ioa~id:

t
* QIi + Kt+4.5)

h-I t

r- + + 2i. (K-t) h(t1K)-1 (4.6)i=i i--h+ I

0 <Pt - ! O<t<K-1 (4.7)

The inequality 4.6 for* t K -1 is always dominated by the one correspond-

ing to t = K-2 and will be removed from the system.

Now we use the bounding technique presented in the introduction. Thus,

any iT > 0 which is a solution of the following system yields a bound

i~l for the performance of the greedy algorithm.

K

S K

"th

I K h th row

I...l h+I K-h

1... 1 h+ I 2 y -h-I

2

<e

3

I . .. 1 h+1 2 2 2 2 0 (-I row

I -I

1 -I 0

0 ! -1

I -I

. .. .. . . . . . -
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We decc..-pcse T, into two vectors . (u,v), "v,,c-re u (ui = I,...,I-I)

is associated with the first (K- 1) rc.:s cf te above r-trix and

v (v. i =1,..., K-1) is associated with the rr-a~ning rows.

K- I

Ku + u. + v (4.8)

i=2

K-I)zut + ; U .+ V t  - V t _l < - <  t < h -1 (4.9)

it+!

K-I
+ . (h+ Ou i + vh - vh I < 1 (4.10)

Kh+i=h+1 lh~

i=- I

(K-t +I)u t + 7 2u i + Vt - vt.. I, h+It < '-I (4.11)
i=t+l

To compute an analytic solution of this system, we consider two separate

cases : K>2h and K<2h.

I _ i
Vhen K ; 2h , setting u. = 0 for I < i < K -2, UK-I i

for 1 -< i < h- I and v. = 0 for h < i < K-I, we get a 'ound of value

WI-en K < 2h, we set u. 0 for 2h - K + I .i -<K - 2 and v. 0

for I i-<2h-K and h<i < K- 1. (Note that, in the cases h K or

K- I, the whole vector v is set equal to 0 vras no u. is. In the se two

cases the rt-aining system is trianglar.) Mh,&n h -< K-2, tie r,.-!-anlng

sy stem is

K u 1  I +, t -< 2 h -Ku t  ut+ 1  .. uhK + ut._i

uK 1 < VI - Vt  2b- K+ I < t < h-I

(4.12.t)

(h * 1)u ' 1 + vh ]  t h

2 h+I t K-I
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We consider the solution

u T 2 I - i < 2h V

- - h h < K 2)

and V. (K -2 h+ i) 2h-K < i h- .

We now prove that this solution is feasible. W'hen h< K-2, tle in-

rqualities (4 .12.t) are verified for t > h+ I as a conscquence of the

nf7 ,-7ption K < 2h. For 2h- K + I < t < h, tI.e in..pialities are F.atic.fi d

with equality, i.e. when t = h

( (h+ I)(K-h) + h(K-h-l) V(h+I) K K h-I

and when 2h-K + I t h- I

K-h h
UK- I -K= t- - vt

The values ui, I < i < 2h-K, are obtained by bolving at equality the tri-

angular system (4 12.t), I < t <2h-K

h
K u + u h+

t t-I + - + U2h _K = 9 ( I - 1

(The crases h = K or K- I are also obtained by solving the corr-bpotrding

ti-ian.ular syst.Jms at equlality.)

Since (4.8) holds with equality, the value of the boiund is

U. v (K- hl I h

iF

_____
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Note that the l:7st Lound which can be ebta'ned from tl'e syc .. (4.8) -

(4.11) is the optiral value of the linear program

K-i
max u. (4.13)

i--I

subject to (4.8) - (4.11)

and u > 0, v > 0.

We claim that the solution derived in this section is indeed an optiral

solution of (4.13). To check it, it suffices to exhibit a fceasible solution

of the dual linear program with the same objective value

K
rin S 0 (4.14)

i=l

subject to (4.5) - (4.7) with Z* set equal to I

and p ' O.

,e propose the following solutions

K >2h, take pi = for I < i <h and oi - 0 for h+ I < i < K.

W.en K < 2h, take

(K - 1)i
-1

P - K 1  for I1 i < 2h- K

K

Pi = 0KI for 2h -K+ I i h(

P i = 0 for h+l < i K.
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The interested reader can verify for hii-self the feasibility of these

solutions. The fact that Yi=, Pi when K > 2h is obvious. When

2h -K 2 h-K
Ki<2h, . Pi = - (eometric series) and

K K - It K - I 2h-K
i=2h-Kl Pi -. Therefore

1 =h K.. h (\K I 1K 2 ,h-K
Pi  = ,-:-) "(4.1 6)

Now we show that the bounds

ZG I
K<2h

Z*

obtained above are tight; that is, we exhibit families of matroids and sub-

modular nondecreasing set functions for which the greedy performance satisfies

the above bounds with equality. We define a matroid on the set of elements de-

noted by B1 AII IT. where I B- h, IAI = h I TI - K - h. The elements in B will

be the first elements chosen by the greedy algorithm, the elements in A-will belong

only to the optimal solution and the elements in T will be common to the greedy

and the optimal solution Let's define an independence system in the following

way. The independent sets are all the sets of size at most K not containing

more than h elements in the set B U A. The sets of h elements in B IA are

called critical sets.

PROPOSITION 4.3 The independence s,%strn is a ,aty,''i d.

PrOOf. It is the direct sum of two unifcrm ratroids, [12). It is also easy

to check the ratroid axioms (1.2) and (1.3).

n"
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We now examine the case K 2h and define a nondecreasing s.imodular
I

set function Z which gives the worst case of -f . The subsets of A of a

given cardinality will be indistinguishable, as far as the value of Z is

concerned. Sowe will deunote by Ai any subset of cardinality j . Siilarly

the subsets of BU T of a iven cardinality will be indistinguisable, 
so

we will denote W i C BU T any subset of cardinality i.

Z(O) = 0

z (W i U A _ + >h.2h

Z(W' iU A3) + >~ ih.
2 2h

TPtOI'O ]'ION 4.4 T;e ".oic.'on Z -s a'. - -  ,

The proof is very easy. It is left to the reader

The set B can be chosen first by the greedy algorithm because the

incr,--ent given by any ele:, ent x E B is not sraller than the incri :tnt

Eivtn by any other element, wen the set of eleci=nts has cardinality less

tlan or i-qual to h (ties are bromen arbitrarily). At stage h, the only

elt:i-,nts which give a positive incre.ont are the ele-.ents a E A, but they

fern circuits ,,ith the s-t B, hrvcause it is a critical set; tn,-tf'.re

G)
z Z (B U T)-

1 ' 1
Sipce IT] K-h -h, Z(TUA) + - 1.

For the case K < 2h, we use the r-atroid defined earlier. Hcwever, we

need to partition the set B in two s;is'-ts, c-ne will still be drieted by B,

the other by y. Na1e-icly, let B be the sct of the first 2h -K cl,-..nts

in the grm-dy solution, Y the sot of til. r:(t K- h clc-t-L ts in t.,c c -

!
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solution, T the set of K-h elements cc-. ,on to the greedy and the optimal

set, and A the set of h elements only in the optimal solution. We denote

by Bi C B, WJ C Y UT and Av C A subsets of cardinality i, j and nr,

respectively. We consider the following function

Z(B U W U A m ) = P P + (q+m)pOi+r+! i +<h
t=]

2h-K
Z(B UW U A ) = E P + (K-h 4 )h i

t= 2h -K+ 1
t--I

vhere q -min (j, K-h]

r =,max [0, j-(K-h)]

and Ot, I < t < K, is given in (4.15).

.'ote that the function is doubly defined ien i + j h. It is ,asv to

w-rify that the two expressions are then identical since V - h (a con-

.,etizr-nce of the fact that i < 2h -K). For the proof of our next tl--vorem,

we will find it useful to have both expressicns available.

'HlEOREM 4.5. 7re f',nti n Z defi:ed accve is s:iv 2 c!:,d .

The proof is straightforward, though som-ewhat long. Anyone intt-rEsted can

find the proof in the appendix.

Arain, the set B can -be chosen first by Greedy, b,.caLse v}en i < h

B C B and £ EB -B , we have p 0 z ) i+, which is t-qual to the

increrent given by elements in Y U T or in A. .hen all the elc-ents in B

have been added to the greedy solution, we have i = 2h -K and the eln-c-nts

in Y give incrr-rents p2h-K+l becaise r is r-qual to zero. After that,

r c:-tnts in A give a positive inci|rent, but B U Y is a critical spt aod

the addition of an element in A would create a circuit. TIcrefore, only

elerents in T can be added, but since i +j =h, they give null increments.

Therefore, we obtain

G
Z Pl + "'" + r2h-K + (Y-h)h
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If we consider the solution T U A, the eltiT-ents in T give i' r, nt s of ,

~s P~- a s thle e; n t i n A. Th er e fo ie,

-(K-h) h
zK K

And, by 4.16,

z h (K - )2h-K

5. A TIGHT BOUND FOR INDEPENDENCE SYSTEMS

In this section we consider instances of problem (1.1) where X is an

independence system. As earlier we assume that Z is a nondecreasing sub-

modular set function with Z ()=0. Let S~ 0 and S~ ri

t = I...,. ., be the successive sets chosen by the greedy algorithm. Note

that k < 1 :5 K, where K and k are respectively the maximum and minimum

cardinality of a maximal set in X (K and k are sometimes called respect-

ively the upper and lower ranks of X.) Recall that 0,= gj(S i_1) and

that &, denotes the total curvature of Z. (In this section V, could be

replaced by u. defined as in Section 2 with Cj being an optimal solution and
k

and S being the set S .

5.1 F ,r 7-.~~~i't set Q2 1.,d t=0 .,k ,

Z r) cP. + Is p. + (K -s)pt+
1:j.,-St-S2 i:j.E ,nSt 1t+

1 1t

P'roof Follows from Le-ma 2.1 and the observation that St u{} is in-

dc.tndntas a consequence of the assu-pt ion t <_ , - I.
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We will only use Lemma 5.1 when ( is an optimal solution.

Consider the family F K,k~ of all instances of problem (1.1) vhere X

and Z have the given parameters K, k and a as defined above. For sim-

plicity of notation we write F = F K,k, * For 0 < s < k, let

< < i < ...< i < k be a sequence of integers and let F(i1 , .. ,is) c F

be the family of problems such that a greedy solution S {j ..... j has

the elrents ji "" "' j. in com- on with an opti-al solution 2. Note
1S

that when s = 0 the set of cormnon elements is e7pty.

Let ZG and Z * be the values of a greedy and optimal solution r.=spect-

ively. As a consequence of Lenma 5.1, for any problem in F(i ,. s

ZG  B(i ,. ,i)Z where

k
(5.1) B(i l,...,s) Min p i  subject to p.i 0, i =,...,ki=l

and

i i k
s k

1 K , p

I a "

• K

• a K

* a I K-I

a I a

K-s+l

1 K-s

LI L a I a • a a ... a K-s J k
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Proof Ass u.e s I and consider i for I < r < s. For 'nmplicity ofr

notation we d note q = i First we show that o c, in sere optimal
r' q q1I

solution of the linear program (5.1) associated with B(i ,..,i s). Assume

not, i.e., assume that 0 >P The inequalities q and q+l of the sys:em
q q+l

are

oL+ .. P I + (K-r +I)oq I
and

Oi 01 + + a oq- 1 + pq + (K-r) oq+ I 1

.;te that the first of these two constraints is not tight. Decroase the value

of pq by c > 0 small enough so that the inequality retains fc sible, and

C
ad - to p. for q + -< i , k. It is clear that this new solution is

r 1

feasible. The objective value of the linear program is modified by

(k - q) K --- - E < 0 since k < K and q > r. Therefore O < q in som-e

optimal solution of (5.1).

New assirme q = i < i - 1 Denote by A the constraint :atrix ofr r+1

the linear program (5.1) associated with B(i ,. . .,r ,i,iri S)

and by A' the constraint matrix associated with B(i ,...,irl r + lr+1

...,i ). A and A' only differ by their colu-ns q and q+ 1. Thus any

v-ctor 0 which satisfies I < A o and pq < 0q+1 also satisfies 1 < A c.

This implies

B(i .. . r llr r+.... ,is 'i 'i B(i P.. ir- 'ir  + 1, it+1 2 .... )i )
r-1''r'r+i'* s S r r l' s

Repeating iteratively this argurent for all I r < s such that

i < i - 1, we obtain
r r+I

B(i >.... ) B(k-s +1, k-s + 2,...,k).

I
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New let A be the constraint matrix arsociated with B(k - s + I, k - s + 2,
..,k). Any vector P which satisfies I <  A - .nd r,_

n -s+1 ,-3.2

< k  also satisfies I < A O . This sho'ws

B(k-s + 1, k-s +2,...,k) > B(k-s +2,...,k) > ... > B (k) = B(.

5r' 5. 3. B (¢) >g a k

s+I

Proof : Consider the linear program (5.1) associated with E(l). 'ult'ply

the tth constraint by (K -OLk and add all the constraints.

K~ K )~~

I (K W - a) P -a - (K - )t ]

Su-ning the geo::,etric series we observe ti-at the coefficients of p. equal I

for every i = I,...,k and that the left-hand side of the inequality equals

I [ - (K) as required.

.- .A If X is an 7- r

-.nk k, a-d if Z is a n2nier&asini . set oi w Z( ) = 0

)Z ..>'.2re a , tr en

z G > I i- z*a - K

t:4 t -,z " tigt for aZZ 0 < a < I af k < K.

Proof The bound is valid as a consequence of Tcr-as 5.2 and 5.3 and the

fact that F = U {F(ill ... ) i < i < ... < i < k is a (possibly
S I SI

empty) integer sequence). The fact that the lound is tight is shoun by the

folluwing worst-case e.xa-ples.
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Let N = {jl,j,.. jK_ , K )  and let X be the family of all

the s::bsets S C N which contain at most k e!E:ents if j E S and at :.ost

K if ji e S, where k < K. Define pi -=-K for i = 1,...,K,

and c(;nsider the set function defined on the subsets of N as

tK - ul

Z( i 1i2 9 3 1 ' r I Wr )  K +

1 t I u h= h

in this forrula we allow t or u to take the value 0. The s,-7 aton is

ta-..n to be 0 if t = 0. Therefore Z(O) = 0. Note that

Oji(ji'' .t '...'W ) = (I - a )1 i > ( -a)Pi

t
(j I I

r '''''Ji t' Wr1'''' r )  K h=l ih> 0l- CO

This shows that the set function Z is submrodular, nondecreasing and has

total curvature a.

The optimal solution 6f problem (1.1) is {w},...,toK } with value I.
1K

Since p1 = the greedy algorithm can choose j , in the first iteration.

ASsume it has chosen Si -I  {J,.,Ji l}. Then " Pi-l i

-i- 1 1
rs ri-l) KK h 1 h KKK 1K....

So the greedy algorithm can choose the element ji in the ith iteration.

1 [I (K JOThe greedy solution has the value 1 h = - -v;--. as required.
h=l

L-.-9ZLL4RY 5.6. [5 z > -

Proof : Set a = I in the bound of Theorem 5 .4.

C RILARY 5.6. [6) , [7]. If X is an i,2e ,0c'c1 e o. u Z is
ZG kZ

K

_ _.__ _ __L_ _ -_ Z*
: - ... . . . - ' "2 ,:
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Proof : Let a -, 0 in the bound of Theorem 5.4. The fact that

/ ~k

I I .~ irplies the result.

C.:-0QLLARY 5.7. If X is a unifcin r- roid and Z kas total c:r2vature a,

.h G zc - tK) Z*

Ct,. O. TARY 5.8. L[2] , C)ll. If X is a Uniform Maltrci, t;

- (K -I)K)Z

Proof Set o 1 in Corollary 5.7.
EJ

(kGOLARY 5.9. If X is a unifcrm matrcid and Z hzs t-taZ :,vture a,

h - e K-a

Z* K - o*.

Proof : For any integer K, < e • Therefore the bound follows

from Corollary 5.7. Furthermore > for all 0 <[<I]<

6. THE BOUND I /(p + )

The last result that we shall prove concerning problem (1.L) is the

following. Let X be an independence system, p the mininum number of

natroids that one needs to intersect in order to obtain X and Z a non-

decreasing subiodular set function with Z(') = 0 and total curvature a.

Then the greedy algorithm finds a solution with value ZG > I Z*,

where Z* is the optimal value.
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However we derive the bound for a more Z-neral model than (1.1),p +a

as an example of a possible extension of the results in this paper.

Given a nonnegative vector u u. j E N), let Jul = S u..

N jEN J N
Given two vectors u, v E R we define w = u vv as the vector of R with

components w. = max (u. v.) for all j E N. An t is
I N.-

a pair (N,P) where N is a nonempty finite set and P C R is a finite+

family of integral vectors such that

(i) v E P, u < v and u is an integral vector u E P, and

(ii) u, v E P and l + I = iv * w E P such that u <w <uvv.

The vectors in P are called i e €'.dent :;e . The concept of

integral polymatroid was introduced by Edr-onds [41 as a generalization of

matroids (obtained when P contains only 0,1 vectors. Then the indepen-

dent sets of the matroid are precisely the subsets of N whose 0,1 inci-

dence vectors belong to P.) An introduction to integral polymatroids can

be found in [12]. A known property is that P can be written as

(6.1) P = {x > 0 and integral : Z x. < r(S), VS C N)
jES a

where r is a nondecreasing integral sulmodular set function with r(O) 0.

N
A vector '.Lktion Z = R , R+ is submcldular and nondecreasing if

(6.2) Pi(v) > pi(u) > 0 for all i E N and v u E RN

where pi(v) Z(v+e i) - Z(v) and e. is the unit vector whose ccmponent

indexed by i E N is equal to 1.

Given a nondecreasing submodular vector function Z, a generalization

of problem (1.1) is
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(6.3) max {Z(v) v E X}

where X is the intersection of p integral polymatroids. Note that, as a

consequence of (6.1), the problem (6.3) can be written as

(6.4) max Z(X)

Ax < b

x > 0 and integral,

where A is a 0,1 matrix. Conversely, for any 0,1 matrix A, the problem

(6.4) is equivalent to (6.3) where X is the intersection of a nu-ber of

integral polymatroids. For example X = r) P. where P. = {x > 0 and
i 1 1 thintegral : a i x  b i }  a i is the i t h row of A and b. is the h component

of b.

A steepest ascent (or greedy) algorithm for solving problem (6.3) or

(6.4) would be

~~~G e e a c .. i ,l n

ii*tia:zaticn Set v0 = 0 and t I.

Step t Find j E N such that P (vt-l)= max {o((V t -l)

t + e. E X}. If no such j exists, stop.
•t t-I

Otherwise set v = v + e. , increment t by 1
it

and repeat Step t.

In this section we assume Z(O) = 0. If we define pt = Pt (v t-,

k G = .. +twhrthe value of the greedy solution v is Z = p1 + ... k 9k, where kis

the value of the parameter t when the greedy algorithm stops. In fact,

k = r(N) as defined in (6.1). Note that the greedy algorithm defined

above is not polynomial in INI.

Let m = (mi. i N) where mi is the largest integer X such that

the vector X e. E X. Define the total curvature of Z with respect to X
1

as

..... . , . - I



-30-

a =max { P ] ( 0 )  - P (m-e 

jEN* p. (0)

where N* = {j E N P.(O) > 0).

THEOREM 6.1. Let X be the interict ion of p ipteg al po, Z titoids Pi,

i= I, . .. ,p and Z a nordecreasing su!1!ioduZar vector ,,4tcticn i'th Z(O) 0
and total curvature a. Then a greedy sclution to pr 'blan (6.3) Lis a value

zG > I Z* wktre Z* is the optimal value.

Proof : Consider an optimal solution w. We will write w = r e(Z) whe re
(0e(Z) = =1

the e s are unit vectors, i.e. e = e i(t) for some i(t) E N. Note

that the same unit vector e. may appear several times in the sumration,

indexed by different values of Z.

ItLet s be the vector obtained at iteration t of the greedy algorithm,

t = I,...,k. If Iwi > t, then we claim that, for all i,

(6.5) st + e E Pi for at least jwl -t of the vectors e

This is proved by repeated use of axiom (ii) of the definition of inte-

gral polymatroids : consider w' < w such that w' I = t + I. By (ii),
M) t: t M) t. W - )3 e such that s < s + e W w V st . Now replace w by w - e

and repeat the argument. Since it can be repeated Iwi -t times, the proof

of the claim (6.5) is complete. A consequence of property (6.5) is that

t M ( p

(6.6) if Ijw >pt, then s + e E n p. for at least I -pt of the vectors e

For any such 1, p (S ) Ptl as a consequence of the choice made
i(t.) t

by the greedy algorithm.. So the e s can be ordered so that
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(6.7) Pi (t) < t~ for pt < E < p(t+I) and t 0,..kI

Note that k >- as a consequence of (6.6).
P

Let WAS k be the vector whose jth com-ponent is min (w., s.) and let

k k
L C {1,...,jwi) be a set of indices such that W AS e Then

Z (W) + 0I -a) Z p < Z(W k S) + <; U.~()~ZS) + I p (S
t t p (sco ).

t~I tEL

As a consequence of (5.7)

k k

t=1 t=I

Therefore Z p+O)ZG as required.



-32-

APPLNDIX proof of Theorem 4.5

PROPOSITION : Let p 1 I n < K, be given in (4.15).. The differ'.rce

p n+I ,-(X ) , 1 - n <2h -K, is equaZ to

K-Pn

Ploof.

X (K -I ) n  -(X -1 ) K (l -]) n - ]

n+l n Kn+l

_ (K-) - K(-) K-x

- K n K n

Ie are now ready for the proof of the tleor, :r We prove

Pi(S) ; Pi(R) > 0, for each S C R C E, for rach k E E.

Ca-sc I i E B

].a) i + i <h, j <K-h (note that r = G, q = j)

U U A O + + ( * 100i+2 - Q M)pi+]

(j +m)pi+2 - (i 4 - 1)pi+ .

Fiom the above proposition, by substituting j+m for X, we get

K - (j + m)P - K Pi+i "

. .....
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Since j <K-h, m<h, j +m <K, we have pt >0. :oreover, by lowering

j or m or i, p c t annot decrease.

I.b) i + j < h, j >K-h (note that q =K-h, r = j + (K-h) > 0)

u u Am) =Pi+r+ + (K- h+m)-i+r+2 (K-h +m)pi+r+1

= (K -h +r)pi.r+2 - (K - h Tr)OA+r+

Again, from the preceding proposition, by setting X = (K-h 4m), we

get

h-m
Pt K Pi~r+]"

Since P. ; 0 and m <h, we get p£ 0 . Moreover, if i or r or m

decreases, p£ increases and

h -m K- (j +) h
K Pi+r+l < K Pi+I en j<K-h

I.c) i +j >h.

p (Bi u w3 u AM ) =0

Ca~e 2 k EA

2.a) i +j < h

pt(Bl u wj U Am) Pi+r+

2.b) i +j h

PI (B' U Wj U AM) = 2hK+ I .
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Pi4r+ is Ereater thhn ur equal to P2h-lI because .len r 0, i < ph
!en r >0, r =j - (K -h), but i + r i +j - (K -h) < h - (K-h) 2h-K.

Cae_ 3: EYUT

3.a) i +j < h, j < K -h (note that r 0, q = j)

O£(B i U W3 U A m) = (j + i + M) )i+I = Pi+ "

3.b) i +j < h, j > K-h (note that q K -h, r > 0)

P (B i U W3 U AM ) = i+r+I (K-h +m)p - (K-h+m)iro.

S(K-h+m)pi +r+2  (K- h-I 4m)Oi+r+.

Again, by applying the proposition, we get

h-M
P -K Pi+r+1

h - m h-rnSince <- -- - I and Pipr+ , Pi ! the condition pi+, > his

always satisfied.

3.c) i+j > h

01(U i UWi U A) =0.

Therefore, the function is sub-odular and nondecreasing.
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For the problem max{Z(S) : S is an independent set in the matroid X), it is

well-known that the greedy algorithm finds an optimal solution when Z is an

additive set function (Rado-Edmonds theorem). Fisher, Nemhauser and Wolsev

] have shown that, when Z is a nondecreasing submodular set function satisfying

Z(6) - 0, the greedy algorithm finds a solution with value at least half the

optimum value. In this paper we show that it finds a solution with value at

.least l/(1 + a) times the optimum value, where a is a parameter which repre-

Isents the "total curvature" of Z. TfishTramreratU a1WteTs 9-tt- 1 and
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a - 0 if and only if the set function Z is additive. Thus the theorems of Rado-
Edmonds theorem is given in terms of a "greedy curvature" of the set function.
Unlike the first bound, this bound can prove the optimality of the greedy algorithm
even in instances where Z iL not additive. A third bound, in terms of the rand and
the girth of X, unifies and generalizes the bounds (e-l)/e known for uniform matroids
and 1/2 for general matroids. We also analyze the performance of the greedy algorithm
when X is an independence system instead of a matroid. Then we derive two bounds, both
tight:
The first one is (1 - (1 - a/K) ]/a where K and k are the sizes of the largest and
smallest maximal independent sets of X respectively; the second one is 1/(p + a)
where p is the minimum number of matroids that must be intersected to obtain X.
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